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Abstract. The present work shows how numerical computations on the flow around a rough element can be used
to find reliable results for the wall shear stress and the displacement in origin for the flow over a fully rough
surface. The numerical computations are combined with the integral methods of Perry and Joubert (1968, JFM,
17, 193:211) and of Perry et al. (1969, JFM, 87, 383:418) to find reliable data for the error in origin that can
be used to explain how the shear stress develops. All procedures are tested against hot-wire data obtained in a low
turbulence wind-tunnel. In fact, four different methods are used to find the shear stress at the wall: the classical
momentum integral equation, the velocity gradient method of Perry and Joubert (1963), the Reynolds shear stress
in the surface layer and ¢ momentum balance around o single rough element.
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1. Introduction

The description of turbulent flow over a rough surface is a central problem in fluid mechanics. Since
most surfaces in nature and in technology are rough, the interest arose by this subject is indeed very high.
Unfortunately, the physical and mathematical modeling of such flow is inherently difficult. The following
statement by Schlichting makes this clear: “The desire to explore the laws of friction of rough pipes in a
systematic way is frustated by the fundamental difficulty that the number of parameters describing roughness is
extraordinarily large owing to the great diversity of geometric forms” (H. Schlichting, Boundary Layer Theory,
7th edition, page 615).

Despite the aforementioned difficulty, the advances were many. As early as 1923, Hopf identified two types
of roughness. Tf surfaces were formed by relatively coarse and tightly spaced elements (sand grains, cast
iron, cement), flow resistance was observed to be proportional to the square of velocity (Reynolds number
independence). Tn this case, the effects of roughness could be expressed with the aid of a single roughness
parameter. If, however, surfaces were formed by gentle protusions distributed over a relatively large area, flow
resistance depended both on Reynolds number and on a roughness parameter. A few years later, Einstein and
El-Samni (1949) observed that for flow over a rough surface the velocity profiles should be plotted considering
that a theoretical wall was set at distance below the top of the rough elements. The concept of a displacement
in origin was further studied by Perry and Joubert (1963). These same authors in a sequence paper (Perry et
al., 1969) identified two wall geometries that resulted in different log-law behaviors: one type with a reference
length based on the size of the roughness (termed a ‘k’-type roughness), the other type with a reference length
based on the pipe diameter (termed a ‘d’-type roughness).

A major difficulty in developing models for flows over rough surfaces is to measure the wall shear stress. All
traditional methods developed for smooth walls including the Preston or Stanton tubes, momentum integral
methods and the gradient graphical method are highly inaccurate. As an alternative, more reliable method,
Perry et al. (1969) proposed to find the wall shear stress by pressure tapping the roughness elements and
assessing their form drag.
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The objective of the present work is to assess the current state of turbulence models in regard to the numerical
simulation of flows over a rough surface. Tn particular, one turbulence model will be considered: the Baseline
Reynolds Stress Model (BSL-RSM). This model does not use the eddy viscosity hypothesis but solves a system
of transport equations for all components of the Reynolds stress tensor. The possibility of inherently accounting
for stress anisotropies makes the BSL-RSM a good choice for the description of complex flows.

A common practice in the numerical simulation of turbulent flows is to consider the existence of a near wall
region where local solutions can actually be used to provide wall boundary conditions. For rough walls, a local
logarithmic profile can be specified in terms of a roughness reference length, the so-called ‘equivalent sand grain
roughness’ (Nikuradse (1932)). This length, unfortunately, is not exactly equal to the real roughness height; it
also depends on other properties of the wall including shape, distribution, etc. This single feature makes the
use of log-laws very uncertain for flow over rough surfaces.

Here, the solution strategy will be different. Instead of using log-laws to specify the wall boundary conditions
we will follow the following procedure. First, the flow domain is discretized and solved considering every
roughness element individually. Having obtained local solutions for the mean and fluctuating quantities, four
different methods are then used to post-process the numerical data and find the wall shear stress. These
four methods are based on i) the momentum integral equation, ii) the form drag of the individual roughness
elements, iii) the spatial average of the Reynolds shear stress and iv) the velocity gradient method of Clauser
(1954). With the resulting reliable data that is obtained for the wall shear stress, the logarithmic profile can
then be re-constructed to find the reference roughness length of the surface and the displacement in origin.
These are the two parameters of engineering relevance.

The present calculation procedure is then compared with some new experimental data. With tunnel exper-
iments over a rib-type surface are carried out to provide data of local mean and turbulent quantities.

2. Determination of wall shear stress

One of the simplest ways to find the wall shear stress is to consider the momentum integral equation, which
can be cast as

dU, dé
=4 = 1
(2+ H) I +daT (1)
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where, U; denotes the external flow velocity, §* is the displacement thickness, 4 is the momentum thickness and
H=6%/8 is the shape factor.
Although very useful, Eq. 1 has the disadvantage of relying on a differentiation to find c¢¢. The consequence
is that a large sampling of # must be considered and any necessary curve fitting must be carefully considered.
The evaluation of ¢y by pressure tapping individual roughness elements was described in Perry et al. (1969).
By drawing a control volume with a unit lateral length around a single element, a simple balance of the x-
momentum results in
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where, 7 is the effective shear stress acting over the wall, k is the roughness height, A is the roughness pitch,
APy is the external pressure gradient, Uy is the external flow velocity and
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with Pa(y) and P;(y) the pressures measured on the surface of the individual roughness elements as a function
of the distance from the wall.

The term Cpg can can also be evaluated from an integral momentum balance of the outer flow on the control
volume defined in Perry et al. (1969), according to
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where (u/v') denotes the turbulent shear stress and (uove) the product of the temporal mean horizontal and
vertical velocity components along the top of the control volume.

The local wall shear stress can also be determined by plotting the mean velocity profile on coordinates U7
against y. This procedure is known as the Clauser chart method. For a rough surface, Einstein and El-Samni
(1949) showed that the origin of the y-axis must be taken some distance below the top of the roughness elements.
This distance, hereafter denoted by e, defines a coordinate system that will give a logarithmic distribution of
velocity near the wall.

Hence, the mean velocity profile is to be written as

i — lln <(yT +6>UT
U, x v

>+A+—&+W(y/5) (5)
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where u, is the friction velocity, s is von Karman’s constant (=0.4), yr is the distance taken from the top of

the roughness elements, A is the classical constant in the law of the wall (=5), Au is Nikuradse’s roughness

function, and W Coles’ wake function.

On a log-graph, the above equation appears as a straight line so that its slope and position can be used to
determine u,. Unfortunately, a large number of possible combinations of parameters u,, Au, and £ will give
straight lines with a good coefficient of correlation. In this sense, Eq. 5 is of limited use for the determination
of u,. However, provided u, is known, Eq. 5 can be used to find € and Aw.

The error in origin was shown by Jackson (1981) to correspond to the average displacement height of the
total shear stress (defined by Eq. 6 below). In fact, if we make d = k - ¢, that is, if we take as the reference
surface the bottom of the rough elements, then it is possible to write

— 1
d—h= po (10 — (T2 — puw)) dzdy (6)
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with b = (kl/A), I = width of rough elements,
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70 = [Th2 — puv]y=s,, &; = height of control volume (8)
3. Turbulence models

The numerical simulations will be performed with a Reynolds Stress-w model, the baseline (BSL-RSM)
Reynolds Stress turbulence model. This selection of models is considered representative enough of the state of
the art in turbulence engineering modeling to allow for a good assessment of the numerical computations of the
flow over a rough surface. The advantage of w-equation based models is that they have a more accurate near
wall treatment.

The equations of motion are the Reynolds averaged equations of continuity and momentum for an incom-
pressible flow. Denoting the mean and fluctuating velocities in z;-direction by U; and u; respectively, the density
and kinematic viscosity by p and v and mean pressure by P, the equations can be written as

o;U; =0, oU; + Uj 6]'Ui =—-0;P+ 8j[l/(8jUi + 62‘Uj) — W] (9)

where Einstein’s notation of repeated indexes has been used for conciseness.

The pressure term has been divided by density.

A general way to model a turbulent flow is to compute every component of the Reynolds stress tensor from
transport equations derived directly by algebraic manipulations of the Navier-Stokes equations. The resulting
loss of information implied by the averaging process must then be recovered by an adequate modeling of each
of the terms present in the equations. Most models consider the same basic set of rules to close the equations.
All turbulent quantities are considered to be a function of Reynolds stress, &, € (or alternatively w), mean flow
quantities and related thermodynamics variables. The diffusion of turbulent quantities, in particular, is taken



Proceedings of the ENCIT 2006, ABCM, Curitiba — PR, Brazil — Paper CIT06-0721

to be proportional to the local gradient of the quantity. The dissipation of turbulent kinetic energy is supposed
to occur at very small scales where turbulence is isotropic.

Constants appearing in the models are ad hoc so that they must be fixed through experimental calibration.
The models also need to be consistent with the common requirements of symmetry, invariance and permutation.

Models that use the e-equation frequently have to resort to complex non-linear damping functions in the near
wall region. An alternative two-equation model that is claimed to circumvent this difficulty is the x-w model
(Wilcox (1988)). Tn fact, the great advantage of the x-w formulation is supposed to be exactly the near-wall
treatment, which can accept higher values of y*=(yu,/v), the non-dimensional distance from the wall. The
k-w model has the additional advantage of providing near wall analytical solutions for both the viscous and the
fully turbulent regions.

Despite the superior handling of the wall conditions, the x-w formulation struggles with its strong sensitivity
to free stream conditions. Thus, given the different zonal strengths and, for that matter, weaknesses of the
k-€ and the x-w formulations, a good balance can be achieved between both models if a blending is introduced
between the x-w formulation near the surface and the k-¢ model in the outer flow. This solution was proposed
by Menter (1994), who introduced the so-called baseline s-w model (BSL).

The Reynolds stress model, formulated in terms of the w-equation, can be written as

(W) + O (Unaiity) = O (((yt Jo*) + y) akm) — Py — Tl + (2/3)8'wkds; (10)

The w-equation, can be written as

Biw + OpUsw = Oy ((1/ + l/t/awg)akw> - agfp ~ Ba? + 2(1 — F1)(09w) " O k. (11)

The coefficients in the w-equation (with subscripts 3) are blended between two sets of constants, one to be
used near the wall corresponding to w-based models (with subscripts 1, given below, Egs. 19) and another used
in the free stream corresponding to e-based models (with subscripts 2, given below, Egs. 20).

The definition of the several terms in the above equations is

v = kjw, (12)
Py = 1340, U; + 14,0U;, Tig = —Ustig; P =(1/2)Pys (13)
D;; = 1 0;Up + 751,0;Us, (14)

Hij = B’Clw (Tl‘j + (2/3)/43(5”) — & (Pl‘j - (2/3)])(51]) — B (Dij - (2/3)P(Sw) — ’A}/KZ (SZJ - (1/3)5%(51]) (15)

The blending of coefficients is made through the following linear interpolation function

93 =F¢1 + (1 — F)ipa, ¢ = dummy variable (16)

where F' = tanh(arg?) with
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and
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Figure 1: General view of wind tunnel.

CD, = max(Zp(o'/w)Van, 1071()), o' =1/0.856 (18)

where the following model constants apply

w —region, of =2, 01 =2, $; = 0.075, a; = 0.553 (19)

¢ —region, of =1, o1 = 0.856, f» = 0.0828, ay = 0.44 (20)
and

o* =2, o' = 1.168, f' = 0.09, & = 0.775, # = 0.196, 4 = 0.495. (21)

4. Experimental procedure

The experiments were carried out in the low-turbulence wind tunnel located in the Laboratory of Turbulence
Mechanics of PEM/COPPE/UFRJ. The tunnel is an open circuit tunnel with a test section of dimensions 300
mm x 300 mm x 4,000 mm. The test section is divided into two sections of equal length which can be fitted
with surfaces having different types of roughness. Tn the present experiment however, just one type of rough
surface was tested. A general view of the wind tunnel is shown in Fig. 1.

The rough surface was a rib-type roughness constructed with rectangular aluminum bars of 6.35 by 4.76
mim rectangular cross section (see Fig. 2). The flow before reaching the rough surface traveled through a short
smooth surface section whose leading edge was faired into the wind-tunnel floor by a 200-mm long ramp.

Every roughness element was made removable so that another element constructed with pressure taps could
be fitted anywhere in the roughness pattern. The pressure taps, seven in all, were drilled directly onto an
aluminum bar. The pressure tubes were connected directly to an inclined manometer that was operated at an
angle of 2¢ and was filled with alcohol. Pressures were therefore measured to an accuracy of 0.028 mm of water.

Instrumentation consisted of hot-wire anemometry. The x-probes, Dantec model P61, were operated by
two Kauri constant temperature bridges. Probes were calibrated against a Pitot-static tube at the beginning
of each run. The data was acquired at with a sampling frequency of 10.000 Hz and sampling time of 50 s.
An uncertainty analysis of the data was performed according to the procedure described in Kline (1985). The
uncertainty associated with the velocity measurements was: [V = 0.064 m/s precision, 0 bias (P=0.95).

To obtain accurate measurements (Bruun (1985)), the mean and fluctuating components of the output
signal of the anemometer were treated separately. Two output channels of the anemometer were used. The
mean velocity profiles were calculated directly from the untreated signal of channel one. The signal given by
channel two was 1 Hz high-pass filtered leaving, therefore, only the fluctuating velocity. The later signal was
then amplified with a gain controlled between 1 and 500 and shifted by an offset so as to adjust the amplitude
of the signal to the range of the A/N converter.

The measurements were performed for values of the free-stream velocity of 8 m/s; the free stream-level of
turbulence was about 0.2%. .
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6.35

Figure 2: Geometry of roughness elements. Dimensions are in mm.

Figure 3: Detail of ramp and of pressure taps.

5. Computational details

The equations governing the problem were solved using the well known code ANSYS CFX, release 10.
The model solves the Reynolds averaged Navier-Stokes equations (RANS) through a finite-volume approach.
The solution strategy consists in solving the momentum equations using a guessed pressure. Next, a pressure
correction is obtained which typically needs a large number of iterations to reach a converged solution. The
code uses a coupled solver that solves the equations for the flow parameters as a single system. This procedure
uses a fully implicit discretization of the equations at any given time. In the present steady state case, the
time step behaves like an acceleration parameter to find the approximate solutions in a physically meaningful
framework to a time independent solution.

The dimensions of the computational domain were defined in accordance to the experimental model. How-
ever, due to the high computer-storage and runtime efforts that are necessary to carry out computations over
the full length of the experimental model, the extension of the computational domain was defined so as to
include just two consecutive measurement stations. That meant performing the computations over five rough-
ness elements. This strategy permitted the specification a very refined grid, particularly around the roughness
elements where high velocity gradients occur. The height of the computational grid was taken to be twice the
local boundary layer thickness to keep to a minimum any boundary condition influence on computations for the
surface layer. A two-dimensional model was achieved by considering just one grid element in w-direction.

The above solution strategy depends for its success on a very fine representation of the near wall region.
The present version of ANSYS CFX 10.0, controls near wall computations by an automatic method. Depending
on the mesh refinement in the near-wall region, the method automatically switches the solution approach from
wall-functions to a low-Re near wall formulation. The controlling parameter is the viscous region scale y* (=y
u; /v). Provided y* < 2, the low-Re model will be employed. With the present mesh, y* varies between 1.96
and 0.62.

Computations were carried out on a series of structured meshes that were generated consisting of hexahe-
drons. An extensive grid-dependence test was performed resulting in a final non-uniform, body-fitted mesh with
486.102 elements. The mesh was particularly refined in the near wall region so as to completely resolve the
inner turbulent and viscous sub-layers. The refined mesh region extended up to 1.0 k¥ (k = roughness height)
above the top of the roughness elements.

Inlet conditions were prescribed directly from the experimental data. At the outlet, the turbulent intensity
was automatically calculated by the model. At the side walls a symmetry condition was imposed. At ground
level, the no-slip boundary condition was used.

The computations were performed on two Pentium 4, 3.0 GHz, with 2 Gb DDR400 RAM operating in a
cluster configuration.
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6. Results

Comparison will be made for the second measuring station. The general flow pattern that is formed in the
cavity defined by two consecutive roughness elements is shown in Fig. 4 as yielded by the BSL-RSM model.
A large recirculating flow region is observed which, however, does not span the whole length of the cavity. Tn
fact, two large regions of recirculating flow are identified. Tn a ‘d’ type rough wall, stable vortices are formed
in the cavities and shedding from the protuberances into the flow is negligible. Tn this case, the external flow
passes relatively undisturbed over the top of the protuberances. In a ‘k’ type rough wall, on the other hand,
large eddies with a length scale proportional to the height of the roughness elements are shed into the external
flow blending smoothly with the surroundings. According to the present computations, our present roughness
appears to be of the ‘d’ type. In fact, it must be pointed out that the present flow pattern is somewhat different
from the flow visualization studies that were presented in Perry et al. (1969). Tn this work, for both ‘d’ and ‘k’
type roughness, just one large eddy was observed to develop in the cavities. Here, however, two large eddies are
apparent. A distinct feature of a ‘d’ type roughness, however, is the presence of a stagnation streamline on the
leading face of the roughness element. Notice the pressure distribution on both sides of the roughness elements
(Fig. 5). A stagnation streamline is located very close, but below, to the top of the protuberances.

Figure 5) presents data for the numerical pressure distribution prediction, as well as data obtained directly
from the pressure readings. With the help of Eq. 2, the skin-friction velocity can be evaluated from a direct
numerical integration of the pressure profiles given by both procedures.
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Figure 5: Pressure distribution around roughness elements.
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Over a rough surface, the flow structure has to contain at least two characteristic regions. Adjacent to the
rough wall the flow is strongly influenced by each roughness element and is not spatially homogeneous. This
region, the roughness sublayer (RS), has a thickness of about 2-5k. Above the RS there is an inertial sublayer
(IS) within which similarity theory is applicable. Therefore, in the IS the flow properties are homogeneous on
the scale of the roughness spacing, the mean velocity profile is logarithmic and the turbulent statistics are nearly
constant.

The velocity distribution in different flow stations is shown in Fig. 6a in linear coordinates. The extent of
the inertial sublayer can be seen in Fig. 6b where the profiles are plotted in semi-log co-ordinates. Predicted
turbulence properties are seen in Fig. 7. The longitudinal Reynolds stresses are underestimated by the BSL-
RSM model by almost one third of its experimental value in the near wall region. The shear stresses are also
much underestimated, now by a margin of 50% of the experimental values.
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Figure 6: Velocity distribution on top of roughness elements.

The shear stress in the inertial region is often used by anthors to evaluate the surface shear stress. By
averaging #'v' in the inertial region one may consider vV —u'v’ = w,. However, within the RS, u/v' varies
significantly with both y and x (Cheng and Castro, 2002). The implication is that the height where the
averaging of v'v' is to be taken must be chosen judiciously. Figure 8 shows the predicted values of —u'v'
according to the BSL-RSM for various distances above the roughness element. For very short distances from
the wall, the shear stress is observed to oscillate strongly. For the highest distance, y/k = 1.0, the shear stress
is observed to drop to some very low values, much below the significant values near the wall.

The prediction of u, according to the several techniques introduced in this work is presented in Fig. 9. The
overall agreement is very good.

7. Final Remarks

The present word has shown how sophisticated computational techniques can be combined with classical
procedures to furnish reliable data on the wall shear stress for flows over rough surfaces. The proposal here was
to use CFD to find local results that upon a further processing through integral methods resulted in reliable
wall shear stress predictions.

Overall, the mean results were very good. However, prediction of turbulent quantities was very poor. Tn
fact, due to the complexity of the problem this was the expected trend. The proposed method to find u, was
then conceived to be robust and dependent on mean flow properties. The feature makes this method a very
attractive method to be used in the determination of the displacement in origin and of the effective roughness.
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8. References list

Bruun, H. H., 1995, Hot-wire Anemometry - Principles and Signal Analysis, Oxford University Press.

Cheng, H. and Castro, 1. P., 2002, Near-Wall Flow Development After a Step Change in Surface Roughness,
BLM, 105, 411-432.

Einstein, H.A., El-Samni, E.-S. A., 1949, Hydrodynamic forces on a rough wall, Review of Modern Physics, 21,
520-524.

Hopf, L. 1923, Die Messung der Hydraulischen Rauhigkeit, ZAMM, 3, 329-339.
Kline, S.J., 1985, The Purpose of Uncertainty Analysis, J. Fluids Engineering, 107, 153-160.
Nikuradse, J., 1933, Stromungsgesetze in Rauhen Rohren, Forschg. Arb. Ing.-Wes. No 361.

Perry, A.E., and Joubert, P.N., 1963, Rough Wall Boundary Layers in Adverse Pressure Gradients, J. Fluid
Mechanics, 17, 193-211.

Perry, A.E., Schofield, W.H. and Joubert, P.N., 1969, Rough Wall Turbulent Boundary Layers, J. Fluid Me-
chanics, 37, 383-413.



Proceedings of the ENCIT 2006, ABCM, Curitiba — PR, Brazil — Paper CIT06-0721

-0.05
i ———<%——— y=0.333K
= .
006 — e y20,667K
e G y=1 000K
N -0.07 —
I
é —
2 008 —
009 —
-0.10

>
I
0.06 0.07 0.08 0.09 0.10
x [m]

Figure 8: Predictions of —u/v’' according to the BSL-RSM.
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